sábado, 8 de mayo de 2021

Material de Construcción: Propiedades mecánicas

 El comportamiento mecánico de un material se define como la respuesta del mismo a las cargas externas. Todos los materiales se deforman como respuesta a las cargas; sin embargo, la respuesta específica de un material depende de sus propiedades, de la magnitud y tipo de carga y de la geometría del elemento. El que un material "falle" bajo condiciones de carga depende del criterio de fallo que se defina. Un fallo catastrófico de un elemento estructural, que dé lugar al derrumbamiento de la estructura, es un fallo obvio del material. Sin embargo, en algunos casos, el fallo es más sutil, pero con consecuencias igualmente graves. Por ejemplo, un pavimento puede fallar debido a una rugosidad excesiva de la superficie, incluso aunque los niveles de resistencia necesarios se encuentren dentro de las capacidades del material. Un edificio puede tener que ser precintado a causa de vibraciones excesivas provocadas por el viento u otras cargas naturales, aunque sea estructuralmente sólido. Estos son ejemplos de fallos funcionales.

viernes, 7 de mayo de 2021

Factores económicos

 Los costes del proceso de selección de materiales se ven influenciados por muchos más factores que el coste del material. Entre los factores que deben tenerse en cuenta a la hora de seleccionar materiales hay que incluir:

• Disponibilidad y coste de los materiales en bruto.

• Costes de fabricación.

• Transporte.

• Colocación.

• Mantenimiento.

Los materiales empleados en las estructuras de ingeniería civil han ido cambiando con el tiempo. Las primeras estructuras se construían con piedra y madera. Estos materiales eran muy abundantes y podían cortarse y conformarse con las herramientas disponibles. Más tarde, se utilizó el hierro fundido, cuando las fundiciones comenzaron a ser capaces de refinar hasta cierto grado el mineral de hierro. Al producirse la Revolución Industrial, pudieron fabricarse las grandes cantidades de acero de calidad que requerían las grandes estructuras. Además, el cemento portland, desarrollado a mediados del siglo XIX,proporcionó a los ingenieros civiles un material barato y duradero con una gran variedad de aplicaciones.

En general, en los países occidentales, existen eficientes sistemas de transporte que hacen que la disponibilidad no suponga un problema una vez que se ha seleccionado un material. Sin embargo, el transporte de los materiales puede incrementar significativamente el coste de los mismos. Por ejemplo, en muchos lugares, no es posible conseguir fácilmente áridos de calidad para el hormigón y el asfalto. Si la fuente de suministro de áridos más próxima a una determinada ciudad se encuentra a, por ejemplo, unos 150 km, esta distancia puede duplicar aproximadamente el coste de los áridos en destino, lo que coloca al hormigón en desventaja frente al acero. 

El tipo de material seleccionado para un determinado trabajo influye enormemente en la facilidad de construcción y en los costes y tiempos de la misma. Por ejemplo, los elementos estructurales de un edificio con estructura de acero pueden ser fabricados en un taller, transportados al lugar donde vaya hacerse la construcción, colocarse mediante una grúa y soldarse después. Por el contrario, en el caso de un edificio de hormigón armado, deben crearse los encofrados, colocarse la armadura de acero, colocar y mezclar el hormigón y dejar que endurezca y retirar después los encofrados. La construcción de un edificio con estructura de hormigón puede ser mucho más compleja y puede llevar más tiempo que la construcción de estructuras de acero. Para salvar este inconveniente, comúnmente se emplean unidades de hormigón prefabricadas, especialmente en la construcción de puentes.

Todos los materiales se deterioran con el tiempo y el uso, lo que afecta tanto a los costes de mantenimiento como a la vida útil de la estructura. La tasa de deterioro varía de unos materiales a otros. Por tanto, al analizar los factores económicos de un material, debe evaluarse el coste del ciclo de vida y los costes iniciales de la estructura.

martes, 4 de mayo de 2021

CONCEPTOS SOBRE INGENIERíA DE MATERIALES Parte 2

 El campo de los materiales de fibra se ha desarrollado rápidamente en los últimos 30 años. Muchos proyectos modernos de ingeniería civil han utilizado compuestos reforzados con fibra. Estos compuestos más recientes compiten con los materiales tradicionales a causa de su más alta relación resistencia-peso y a su capacidad de eliminar problemas tales como la corrosión. Por ejemplo, el hormigón reforzado con fibra tiene una dureza mucho mayor que el hormigón convencional de cemento portland. Los compuestos pueden reemplazar al acero reforzado en estructuras de hormigón. De hecho, los compuestos han permitido la construcción de estructuras que en el pasado no se podrían haber llevado a cabo.

La naturaleza y el comportamiento de los materiales empleados en la ingeniería civil son tan complejos como los de los materiales utilizados en cualquier otro campo de la ingeniería. Debido a la gran cantidad de materiales empleados en los proyectos de ingeniería civil, frecuentemente los ingenieros trabajan con los materiales disponibles localmente, los cuales no están tan refinados como los materiales usados en otros campos de la ingeniería. En consecuencia, los materiales utilizados en ingeniería civil tienen propiedades y características muy variables. 

Este capítulo aborda la forma en que las propiedades de los materiales afectan a su selección y comportamiento en las aplicaciones de ingeniería civil. Además, se repasan algunas definiciones y conceptos básicos de ingeniería mecánica que son necesarios para comprender cómo se comportan los materiales. También se aborda la naturaleza variable de las propiedades de los materiales, con el fin de que el ingeniero pueda comprender los conceptos de precisión y exactitud, muestreo, aseguramiento de la calidad y control de calidad. Por último, se describen los instrumentos utilizados para medir la respuesta de los materiales.

miércoles, 28 de abril de 2021

CONCEPTOS SOBRE INGENIERíA DE MATERIALES

 Los ingenieros de materiales son responsables de seleccionar, especificar y realizar el control de calidad de los materiales que van a emplear en su trabajo. Estos materiales tienen que cumplir determinados criterios o propiedades (Ashby y Iones, 1980). Entre los tipos de criterios se incluyen los siguientes:

• Factores económicos.

• Propiedades mecánicas.

• Propiedades no mecánicas.

• Consideraciones de producción/construcción.

• Propiedades estéticas.

Al seleccionar el material para una aplicación específica, los ingenieros tienen que tener en cuenta diversos criterios y llegar a ciertos compromisos. Tanto el cliente como el propósito de la instalación o estructura dictan, hasta cierto punto, el énfasis que habrá que poner en cada uno de los criterios.

Los ingenieros civiles y de la construcción deben estar familiarizados con los materiales usados en la construcción de un amplio rango de estructuras. Entre los materiales más frecuentemente utilizados se incluyen el acero, los áridos, el hormigón, la mampostería, el asfalto y la madera. Otros materiales menos utilizados son el aluminio, el vidrio, los plásticos Ylos compuestos de fibra reforzados. Los ingenieros geotécnicos suelen insistir en que es el propio terreno el material más ampliamente utilizado en ingeniería.


Sin embargo, en este texto, no se estudian las propiedades de los terrenos, porque normalmente suele ser el tema de un curso independiente.

Avances recientes en la tecnología de los materiales utilizados en ingeniería civil han dado lugar al desarrollo de materiales de mejor calidad, más económicos y más seguros.

Estos materiales se denominan habitualmente materiales de alto rendimiento. 

Gracias a que cada vez se sabe más acerca de la estructura molecular de los materiales ya los continuos esfuerzos de investigación de científicos e ingenieros, nuevos materiales como los polímeros, adhesivos, compuestos, geotextiles, recubrimientos, metales conformados en frío y distintos productos sintéticos, están compitiendo con los materiales tradicionales empleados en ingeniería civil. Además, los materiales existentes se han mejorado, cambiando sus estructuras moleculares o incluyendo aditivos con el fin de mejorar su calidad, coste y rendimiento. Por ejemplo, los superplastificantes han hecho avanzar a la industria del hormigón, permitiendo la producción de hormigón mucho más robusto. Las uniones realizadas con materiales elastoméricos han mejorado la seguridad de las estructuras de gran altura en áreas donde se producen terremotos.

Los agregrados sintéticos ligeros han disminuido el peso de las estructuras de hormigón, permitiendo que los componentes tengan áreas con una sección transversal pequeña. 

Se han mezclado polímeros con asfalto, lo que ha hecho que los pavimentos duren más tiempo y sean más resistentes al efecto de las cargas de los vehículos y las condiciones ambientales.

martes, 23 de agosto de 2016

DETYERMINACION DE LA PRECIPITACION MEDIA (I)

Método de las Curvas Isohietas

Para aplicar este criterio se debe contar con un plano de curvas isohietas de la tormenta en estudio. Las isohietas son curvas que unen puntos de igual valores de lluvia y para trazarlas se requiere un conocimiento general del tipo de tormentas que se producen en las zonas de precipitaciones orográficas. Primeramente, se utilizan los mismos segmentos que unen las estaciones en estudio, según Thiessen; y para cada uno de ellos, en función de los montos de lluvia de dichas estaciones, se van marcando sobre los mismos, los valores de lluvia con el cual se irán formando las isohietas, de

lunes, 22 de agosto de 2016

DETERMINACION DE LA PRECIPITACION MEDIA

Método de la Media Aritmética
Consiste en realizar la suma del valor registrado en cada una de las estaciones pluviométricas y/o pluviográficas del área en estudio y dividirla por el número total de estaciones analizadas, siendo el valor así hallado la lluvia media. Se trata de un método de resolución rápida de que conlleva un grado de precisión muy relativo, el cual depende de: el número de estaciones pluviométricas y/o pluviográficas, la forma en que estén localizadas y la distribución de la lluvia estudiada. Es el único método que no requiere de un conocimiento previo de la ubicación de cada estación. El valor buscado se calcula haciendo:
- Método de los Polígonos de Thiessen
Para aplicar este método se requiere conocer la ubicación de cada estación dentro o en la periferia de la cuenca, identificando el área de influencia de cada pluviómetro. Así se van formando triángulos entre las estaciones más cercanas uniéndolas con segmentos rectos sin que éstos se corten entre sí y tratando que los

triángulos sean lo más equiláteros posibles. A partir de allí se trazan líneas bisectoras perpendiculares a todos los lados de los triángulos, las que al unirse en el baricentro de cada triángulo conforma una serie de polígonos que delimitan el área de influencia de cada estación.El área de influencia de cada estación considerada (polígono) está comprendida exclusivamente dentro de la cuenca.

domingo, 21 de agosto de 2016

PLANOS EN UN PROYECTO DE PUENTES

Planos constructivos.- Los planos necesarios para la ejecución de un puente en forma general y como una orientación son los siguientes:

a) Plano general en el que se presentan, la elevación, planta y sección transversal típica del conjunto de la obra.

b) Plano de formas o encofrados de la superestructura (caso de hormigón armado o pretensado) mostrándose, vistas detalles y corles con todas sus dimensiones y acotados.

c) Plano de armadura de la superestructura (caso de hormigón armado o pretensado) mostrando toda la enfierradura con su planilla y posiciones de los fierros, o en caso de pretensado con el detalle de cables y anclajes.

d) Plano de encofrados de la infraestructura con las mismas aclaraciones que para el inciso b

e) Si la infraestructura es en hormigón armado, se detallará también su plano de armadura con aclaraciones similares a las del inciso c

f) Plano de detalles en el que se muestran, postes, pasamanos, juntas de dilatación, aparatos de apoyo, drenajes, etc

g) Plano de obras adicionales, como ser defensivos. protección de terraplenes, prolongación de aleros, alcantarillas adicionales y en fin lodo aquello que vaya vinculado con la segundad del puente